Abstract

Diastereoisomerically pure (dr > 99:1) and enantiomerically enriched (er up to 98:2) substituted propargyl diols possessing a tertiary hydroxyl group were synthesized in a single-pot operation from simple acylsilanes through a combined catalytic enantioselective alkynylation of acylsilanes, followed by an allenyl-Zn-Brook rearrangement and Zn-ene-allene (or Zn-yne-allene) cyclization reaction. Two remarkable features of these reactions are the near complete transfer of chirality in the allenyl-Zn-Brook rearrangement and the highly organized six-membered transition state of the Zn-ene-allene carbocyclization found by DFT calculations. In this process, three new bonds and two new stereogenic centers are created in a single-pot operation in excellent diastereo- and enantiomeric ratios. DFT calculations show that the allenyl-Zn-Brook rearrangement occurs in preference to the classic [1,2]-Zn-Brook rearrangement owing to its significantly lower activation barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call