Abstract

The general methods, photoinitiated or peroxide-initiated free radical chain additions of halomethanes to olefins, yield 1,2-addition products at temperatures ranging from 20 to 100 degrees C. At lower temperatures, -42 to -104 degrees C, a competitive reaction, subsequent to the addition of CCl(2)X(*), yields alkylcyclopropanes. The reactions of 1-octene or 1-hexene and 1-methylcyclohexene with atomic hydrogen carried out in the presence of several transfer agents (CCl(4), CCl(3)Br, CCl(2)Br(2)) initiate a radical chain addition of CCl(2)X(*) and yield cyclized materials resulting from the S(H)i displacement of halogen by a carbon-centered radical. The radical displacement of a halogen on carbon, the reverse of homolytic displacement on cyclopropyl carbon, is dominant at low temperatures. The rate constants for cyclization (k(c)) vs transfer with halomethane (k(t)) showed isokinetic temperatures of -46 degrees C (CCl(4), 1-hexene); -35 degrees C (CCl(4), 1-methylcyclohexene). The isokinetic temperatures for the reactions of the two substrates carried out in the presence of BrCCl(3) were calculated as -204 degrees C (1-octene) and -109 degrees C (1-methylcyclohexene).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.