Abstract

AbstractSituated in the centre of the Paleoproterozoic Bushveld Large Igneous Province (LIP) of South Africa the Vergenoeg F–Fe–REE deposit is one of the largest, but at the same time most unusual, fluorite deposits on Earth. In situ major and trace element analyses of fayalite, magnetite, ilmenite, fluorapatite, fluorite and allanite from fayalite-rich rocks are combined with oxygen isotope data for fayalite, magnetite and ilmenite to unravel the complex evolution of the deposit. Textural and compositional characterization of the fayalite-rich rocks supports a magmatic formation as cumulates and an intense late hydrothermal overprint. Fayalite accumulated together with minor Ti-rich magnetite, ilmenite, fluorapatite and allanite from a highly evolved, H2O-poor felsic melt at low oxygen fugacity. Chondrite-normalized rare earth element (REE) patterns of fayalite and the recalculated parental melts, using fayalite–rhyolite partition coefficients, exhibit positive trends with strong enrichment of the heavy REE (HREE) relative to the light REE (LREE). Apart from the LREE depletion the patterns are similar to those of highly fractionated high-silica REE rhyolites that often occur in siliceous LIPs. We attribute the LREE depletion to crystallization of accessory allanite, the main host of the LREE in the cumulates. Chondrite-normalized REE patterns of the parental melt prior to fayalite accumulation, recalculated using allanite–rhyolite partition coefficients, resemble the composition of the rhyolites of the Rooiberg Group and therefore document a petrogenetic link to the Bushveld LIP. High δ18O values of fayalite (up to ≈7·4 ‰) are consistent with its crystallization in a rhyolitic melt that has formed by extensive fractionation from basic melts of the Rustenburg Layer Suite, the mafic member of the Bushveld LIP. Primary fluorite crystallized together with rare quartz, and a second generation of fayalite, magnetite and ilmenite from rare intercumulus melt in interstices between cumulate fayalite. Textural and mineral compositional data, as well as the generally negative δ18O values of magnetite (–2·9 to 0 ‰), are in agreement with the main magnetite–fluorite ore formation in Vergenoeg being related to a hydrothermal overprint, which was responsible for further F and Fe enrichments of the rocks. Fluorine-rich fluids, released from the crystallizing granites of the felsic member of the Bushveld LIP (Lebowa Granite Suite), caused the extensive alteration of fayalite to bowlingite and its replacement by Ti-poor magnetite and quartz. The hydrothermal overprint was associated with the widespread formation of secondary fluorite and minor fluorapatite. Our new petrogenetic model for the Vergenoeg deposit, as constrained from the primary fayalite cumulates, implies that the formation of the Vergenoeg deposit was directly linked to the evolution of the Bushveld LIP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call