Abstract

Starting point of this paper is photopolymer printing plate used for flexographic printing. It is used for transfer of the printing ink onto the printing surface during the reproduction process. Photopolymer printing plate consists of several layers: polyester basis, photo sensitive polymer material and LAMS - Laser Ablation Mask. In the platemaking process the photosensitive material, which will form a printing plate, has to be several time exposed to different radiation in order to obtain a functional printability performance. LAMS layer has a role of masking in the exposure process. Upon pre-exposure, LAMS layer has to be removed by laser ablation only at the surfaces where photopolymer printing plate needs to be exposed. After ablation the exposures to UV lights follows and the plate will be finished with chemical removal of the unexposed parts of the polymer. Functionality of the finished printing plate has to be characterised and monitored in every procedure step because the formed image element on the printing plate has a major influence on the quality of the finished printed product. In this paper observing of the changes in the polymer material which is caused by exposure through LAMS layer will be performed. The aim is to measure the surface openings on the LAMS mask and to measure surface coverage (image elements) on the polymer material formed by exposure through the LAMS. Measuring will be made by image analysis software based on microscopic images of the control fields of differing halftone values. It is assumed that there will be a correlation between the LAMS openings and formed image elements on the printing plates. Preliminary results indicate that certain differences in image elements can be detected and are probably the consequence of the different amount of irradiated surface of the polymer material. Since the polymer material which forms the printing plate should be stable in the graphic reproduction process, results of the paper will explain the influence of UV exposures on polymerisation process and on the functional printability performance of the plates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.