Abstract
We report on the buffer/absorber interface formation in highly efficient (14.5%, air mass 1.5) ZnO∕CdS∕Cu(In,Ga)Se2 solar cells with a physical vapor deposited CdS buffer. For Se-decapped Cu(In,Ga)Se2 (CIGSe) absorbers we observe sulfur passivation of the CIGSe grain boundaries during CdS growth and at the interface a thermally stimulated formation of a region with a higher band gap than that of the absorber bulk, determining the height of the potential barrier at the CdS∕CIGSe interface. For air-exposed CIGSe samples the grain boundary passivation is impeded by a native oxide/adsorbate layer at the CIGSe surface determining the thermal stability of the potential barrier height.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.