Abstract

The optimization of the methods for the formation of the spatial-energy distribution of the probing radiation power and the processing the receiving signal by the locating laser information-measuring systems (LIMS), taking into account the spatial-temporal structure, is carried out, and the analysis of the existing methods of their processing is carried out too. An assessment of the integral criteria for the LIMS functioning when operating in conditions of interference has been made. The calculation of the parameters of the LIMS main links was carried out, taking into account the correlation between the resolution of the optical system and the capabilities of object detection, recognition and classification. A method was developed for the formation of the probing radiation density distribution and the receiving signal processing, taking into account its space-time structure, which made it possible to determine the optimal duration of the laser probe pulse. The determined duration makes it possible to eliminate errors in measuring the parameters of an object's movement under the influence of a combination of destabilizing factors and a lack of signal processing time, which will ensure the accuracy of the target detection and recognition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call