Abstract

ABSTRACTBackground: The vertebrate inner ear comprises mineralized elements, namely the otoliths (fishes) or the otoconia (mammals). These elements serve vestibular and auditory functions. The formation of otoconia and otoliths is described as a stepwise process, and in fish, it is generally divided into an aggregation of the otolith primordia from precursor particles and then a growth process that continues throughout life. Results: This study was undertaken to investigate the complex transition between these two steps. Therefore, we investigated the developmental profiles of several inner ear structural and calcium-binding proteins during the complete embryonic and larval development of the cichlid fish Oreochromis mossambicus in parallel with the morphology of inner ear and especially otoliths. We show that the formation of otoliths is a highly regulated temporal and spatial process which takes place throughout embryonic and larval development. Conclusions: Based on our data we defined eight phases of otolith differentiation from the primordia to the mature otolith.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.