Abstract

The spore coat forms as a rigid extracellular wall around each spore cell during culmination. Coats purified from germinated spores contain multiple protein species and an approximately equal mass of polysaccharide, consisting mostly of cellulose and a galactose/N-acetylgalactosamine polysaccharide (GPS). All but the cellulose are prepackaged during prespore cell differentiation in a regulated secretory compartment, the prespore vesicle. The morphology of this compartment resembles an anastomosing, tubular network rather than a spherical vesicle. The molecules of the prespore vesicles are not uniformly mixed but are segregated into partially overlapping domains. Although lysosomal enzymes have been found in the prespore vesicle, this compartment does not function as a lysosome because it is not acidic, and a common antigen associated with acid hydrolases is found in another, acidic vesicle population. All the prespore vesicle profiles disappear at the time of appearance of their contents outside of the cell; this constitutes an early stage in spore coat formation, which can be detected both by microscopy and flow cytometry. As an electron-dense layer, the future outer layer of the coat, condenses, cellulose can be found and is located immediately beneath this outer layer. Certain proteins and the GPS become associated with either the outer or inner layers surrounding this middle cellulose layer. Assembly of the inner and outer layers occurs in part from a pool of glycoproteins that is shared between spores, and unincorporated molecules loosely reside in the interspore matrix, a location from which they can be easily washed away. When the glycosylation of several major protein species is disrupted by mutation, the coat is assembled, but differences are found in its porosity and the extractibility of certain proteins. In addition, the retention or loss of proteolytic fragments in the mutants indicates regions of spore coat proteins that are required for association with the coat. Comparative examination of the macrocyst demonstrates that patterns of molecular distributions are not conserved between the macrocyst and spore coats. Thus spore coat assembly is characterized by highly specific intermolecular interactions, leading to saturable associations of individual glycoproteins with specific layers and the exclusion of excess copies to the interspore space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call