Abstract

The results of the investigation of the conduction band electronic structure and the interfacial potential barrier during deposition of ultrathin dicarboximide-substituted perylene films (PTCBI-C8) on the oxidized silicon surface have been presented. The measurements have been performed using the very low energy electron diffraction (VLEED) technique implemented in the total current spectroscopy (TCS) mode with a variation in the incident electron energy from 0 to 25 eV. Changes in the intensities of the maxima from the deposited PTCBI-C8 film and from the substrate with an increase in the organic coating thickness to 7 nm have been analyzed using TCS measurements. A comparison of the structure of the maxima of PTCBI-C8 and perylene-tetracarboxylic-dianhydride (PTCDA) films has made it possible to distinguish the energy range (8–13 eV above EF) in which distinct differences in the structures of maxima for PTCDA and PTCBI-C8 films are observed. This energy range corresponds to low-lying σ*-states of the conduction band of the films studied. The formation of the interfacial region of the PTCBI-C8 film and (SiO2)n-Si substrate is accompanied by an increase in the surface work function by 0.6 eV, which corresponds to the electron density charge transfer from the (SiO2)n-Si substrate to the PTCBI-C8 film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.