Abstract

The accretion process in a typical S-type symbiotic star, targeting AG Draconis, is investigated through 3D hydrodynamical simulations using the FLASH code. Regardless of the wind velocity of the giant star, an accretion disk surrounding the white dwarf is always formed. In models where the wind is faster than the orbital velocity of the white dwarf, the disk size and accretion rate are consistent with the predictions under Bondi–Hoyle–Lyttleton (BHL) conditions. In slower-wind models, unlike the BHL predictions, the disk size does not grow, and the accretion rate increases to a considerably higher level, up to >20% of the mass-loss rate of the giant star. The accretion disk in our fiducial model is characterized by a flared disk with a radius of 0.16 au and a scale height of 0.03 au. The disk mass of ∼5 × 10−8 M ⊙ is asymmetrically distributed, with the density peak toward the giant star being about 50% higher than the density minimum in the disk. Two inflowing spiral features are clearly identified, and their relevance to the azimuthal asymmetry of the disk is pointed out. The flow in the accretion disk is found to be sub-Keplerian, at about 90% of the Keplerian speed, which indicates a caveat of overestimating the O vi emission region from the spectroscopy of Raman-scattered O vi features at 6825 and 7082 Å.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.