Abstract

The surface of 3Cr13 martensitic stainless steel was irradiated by high current pulsed electron beam (HCPEB). The microstructures of the irradiation surface were characterized by X-ray diffraction and electron microscopy. After HCPEB irradiation, formation of a melting layer with depth of about 4 μm on the irradiated surface was determined. Further microstructural investigations indicate that the surface melted layer consists of nanoaustenite and ultrafine carbide particles, which primarily appear at grain boundary triple junction. Additionally, the microhardness and corrosion resistance of the irradiated surfaces was improved significantly. The formation of the nanoaustenite layer induced by HCPEB irradiation was believed to be the dominating reasons for the improvement of comprehensive performance of the material surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.