Abstract

Temporal variation of the lattice parameter of Pd was measured under high hydrogen pressures (2–5 GPa) and temperatures (672–896°C) by X-ray diffraction using a synchrotron radiation, and observed lattice contraction was interpreted as being due to the formation of a large number of vacancy–hydrogen (Vac–H) clusters, i.e. superabundant vacancies. Analysis of the result led to the conclusion that a major part of Vac–H clusters (amounting to ∼10 at.%) were introduced by diffusion from the surface, after a small number of them had been formed at some internal sources. The thermal-equilibrium concentration of Vac–H clusters at high temperatures shows a saturation behavior, which indicates the presence of a maximum possible concentration (ca.16 at.%) of the clusters. The formation energy, entropy and volume of a Vac–H cluster are found to be 0.72 eV, 7.2 k and 0.60 Ω, respectively, and the migration energy and volume are 1.20 eV and 0.49 Ω, respectively. Various other implications of the results are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call