Abstract

We report formation of subwavelength surface grating over large surface area of molybdenum mirror by multiple irradiation of amplified femtosecond laser pulses from a homemade Ti:sapphire oscillator-amplifier laser system in a raster scan configuration. The laser system delivered 2 mJ, 80 fs duration laser pulses at a pulse repetition rate of 10 Hz. Various parameters such as pulse fluence, number of pulses, laser polarization, scan speed, and scan steps were optimized to obtain uniform subwavelength gratings. Energy dispersive x-ray spectroscopy measurements were conducted to analyze the elemental composition of mirror surfaces before and after laser treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call