Abstract
Nanoemulsions are very interesting systems as they offer capacity to encapsulate both hydrophilic and lipophilic molecules in a single particle, as well as the controlled release of chemical moieties initially entrapped in the internal droplets. In this study, we propose a new two-step modified ultrasound-assisted phase inversion approaches-phase inversion temperature (PIT) and self-emulsification, to prepare stable o/w nanoemulsions from a fully water-dilutable microemulsion template for the transdermal delivery of loratadine (a hydrophobe and as Ostwald ripening inhibitor). Firstly, the primary water-in-oil microemulsion concentrate (w/o) was formed using loratadine in the oil phase (oleic acid or coconut oil) and Tween 80 in the aqueous phase and by adjusting the PIT around 85°C followed by stepwise dilution with water at 25°C to initiate the formation the nanoemulsions (o/w). To assure the long-term stability, a brief application of low frequency ultrasound was employed. Combining the two low energy methods resulted in nanoemulsions prepared by mixing constant surfactant/oil ratios above the PIT with varying water volume fraction (self-emulsification) during the PIT by stepwise dilution. The kinetic stability was evaluated by measuring the droplet size with time by dynamic light scattering (DLS). The droplet size ranged 15-43nm and did not exceed 100nm over the period of 6months indicating the system had high kinetic stability. Cryo-TEM showed that the nanoemulsions droplets were monodispersed and approaching micellar structure and scale. All nanoemulsions had loratadine crystals formed within 20days after preparation, which tended to sediment during storage. Nanoemulsions improved the in vitro permeation of loratadine through porcine skin up to 20 times compared to the saturated solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.