Abstract
In situ time-resolved X-ray diffraction (TR-XRD) using synchrotron radiation has been used to capture the dynamics of the reduction of nanocrystalline CuO using a normal supply of CO gas. Copper(II) oxide nanoparticles 4–16 nm in width, as measured by XRD peak broadening, are synthesized using an aqueous organic-nitrate method and reduced in isothermal and temperature ramping reduction experiments. Temperature-programmed reduction of CuO nanoparticles using a ramping heating profile was observed to result in the sequential reduction process CuO → Cu 2O → Cu, with CuO reducing completely to the intermediate Cu 2O phase before further reduction to metallic copper. Isothermal reduction experiments at 250 °C show that CuO nanoparticles completely reduce to Cu 2O, and this phase remains stable without further reduction with continued exposure to CO. In contrast to what is typically observed in bulk CuO in both isothermal and ramping reduction conditions, nanocrystalline CuO reduces to a stable Cu 2O phase rather than forming metallic copper directly. The behavior of the CuO nanoparticles in temperature ramping reducing conditions is controlled by the particle size, with the smaller CuO nanoparticles exhibiting a greater stability and withstanding a higher temperature before their reduction to Cu 2O and then to metallic copper nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.