Abstract

The adsorption behavior of Sr adatoms on the SrTiO3 (1 1 0)-(4 × 1) reconstructed surface with Ti2O3 vacancies distributed in a superstructure is studied by scanning tunneling microscopy and density functional theory calculations. With the adsorption amount increasing, all the Sr adatoms between adjacent Ti2O3 vacancies are closely packed along the quasi-1D stripes on the surface with a uniform separation from each other. The formation of such adatom chains is determined by the surface strain relief—the local lattice relaxations in response to Sr adatoms and Ti2O3 vacancies are incompatible, leading to the strong repulsive interaction between them. Consequently the distribution of Sr chains follows the long-range order of the growth template with their length tunable in a certain range by evaporation amount.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call