Abstract

Nanodiscs are discoidal particles with a planar phospholipid bilayer enwrapped by proteins such as apolipoprotein A-I. Nanodiscs have been widely used for analyzing structures and functions of membrane proteins by dispersing them in solution. They are expected to be used as drug carriers and therapeutic agents. Amphiphilic peptides are known to form nanodiscs. However, the lipid-peptide nanodiscs are relatively unstable in solution, making them unsuitable for many applications. Here, we report the synthesis of an amphiphilic self-polymerizing peptide termed ASPP1, which polymerizes by intermolecular native chemical ligation reactions. ASPP1 spontaneously formed nanodiscs when added to phospholipid vesicles without using detergents. The diameter of the planar lipid bilayer in the nanodiscs was controlled by the lipid:peptide molar ratio. ASPP1-nanodiscs exhibited greater stability at high temperatures or in the presence of urea than nanodiscs formed by the non-polymerizing amphiphilic peptide or apolipoprotein A⿿I. Average and maximal degrees of ASPP1 polymerization were 2.4 and 12, respectively. Self-polymerization of the peptide appears to be responsible for stabilization of the nanodiscs. Our results open a new avenue for the development of nanodisc technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.