Abstract

A new experimental method is presented in which single small gas bubbles are generated in a liquid from a submerged orifice using pulsed ultrasound waves. Pulsed ultrasound waves having a frequency of 15 kHz and a maximum pressure amplitude of approximately 10 kPa are irradiated to a bubble growing from an orifice. Single air bubbles ranging from approximately 0.05 to 0.2 mm in radius are obtained in silicone oil (kinematic viscosity: 1 mm2/s) by using two orifices (0.02 and 0.04 mm in diameter) and by shifting the onset of the detachment-assistance pressure wave. The bubble deformation and detaching processes were visualized and analyzed using high-speed video imaging and direct numerical simulation. Consequently, it is revealed that the bubbles are forced to elongate upward due to the fast oscillatory flow of gas through the orifice, and the elongation causes the bubbles to detach from the orifice. The size of the bubbles at detachment is well estimated by employing a common spherical bubble formation model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.