Abstract

In this paper silver-assisted chemical etching (SACE) was studied to increase roughness and reduce light reflection from the surface of n-type (100) mono-crystalline silicon. SACE process includes two basic steps which are silver deposition and chemical etching step. Simple electroless silver deposition step using mixture of AgNO3 and HF was utilized to form silver nanoparticles onto n-type silicon surface. Following chemical etching step was carried out by immersing samples in mixture of HF and H2O2. Concentration of AgNO3 in eletroless deposition step and concentration of HF in chemical etching step were investigated to get minimum reflectance. The surface of sample was characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and sample reflectance was measured at the wavelength range from 350–1100 nm. The results show that reflectance depends on AgNO3 concentration in electroless deposition step and HF concentration in etching step and the minimum solar-weighted reflectance is 1.74%. This method can be considered as simple, inexpensive method to effectively increase roughness and suppress light reflection for photovoltaic, optoelectronic, sensor, photonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.