Abstract

In the present study, fabrication of surface composite using AA7075-T6 as a matrix material and boron carbide nanoparticles as reinforcement through Friction stir processing (FSP) has been done. FSP technique has been widely utilized for surface modification and the formation of composite material. The B4C nanoparticles size (<30 nm) as reinforcement were padded in dimension of 2 mm width and 1.5 mm depth groove of AA7075-T6 plate as a matrix material. The single-pass process executed using a square tool pin with tool rotation and traverse speed of 1000 rpm and 40 mm min−1 respectively. This research aims to observe and process Self-Assembled Monolayer (SAM), investigate the effect of the B4C nano-ceramic particles on the AA7075-T6 and its mechanical properties of the nano-ceramic surface composite. Frictional and wear analysis investigations under various physical conditions have highlighted surface durability characteristics of the metal matrix composite of AA7075-T6. Microstructure results along with fractography-image highlight the homogeneous distribution of boron carbide nano-ceramic particle. Tensile test, Microhardness, microstructure, Field Emission Scanning-Electron Microscope (FESEM), and X-Ray Diffraction (XRD) analyzed the fabricated (Al + B4C) nano-ceramic surface composite. The fabricated nano-ceramic surface composite could be utilized in lightweight applications such as aerospace, marine, defence, and automotive industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call