Abstract

The present work reports on the formation of extremely low volume, silver nanocup-type structures on the surface by annealing of ultra-thin silver film on quartz in inert environment. Atomic force microscopy studies together with scanning electron microscopy confirmed the formation of Ag nanocup-type structures at the surface. A basic physical model for the formation of nanocups in terms of buckling and Oswald ripening due to surface-induced morphological instability and diffusional mass transport under thermal treatment is demonstrated. Surface plasmon resonance absorptions of nanocup structures are studied and preliminary experiment for observing the surface-enhanced Raman scattering of fullerene C70 molecules has been shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.