Abstract

We demonstrate the formation of molecular monolayers of π-conjugated organic molecules on nanocrystalline TiO(2) surfaces through the thermal grafting of benzyl and aryl halides. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to characterize the reactivity of aryl and benzyl chlorides, bromides, and iodides with TiO(2) surfaces, along with controls consisting of nonhalogenated compounds. Our results show that benzyl and aryl halides follow a similar reactivity trend (I > Br > Cl >> H). While the ability to graft benzyl halides is consistent with the well-known Williamson ether synthesis, the grafting of aryl halides has no similar precedent. The unique reactivity of the TiO(2) surface is demonstrated using nuclear magnetic resonance spectroscopy to compare the surface reactions with the liquid-phase interactions of benzyl and aryl iodides with tert-butanol and -butoxide anion. While the aryl iodides show no detectable reactivity with a tert-butanol/tert-butoxide mixture, they react with TiO(2) within 2 h at 50 °C. Atomic force microscopy studies show that grafting of 4-iodo-1-(trifluoromethyl)benzene onto the rutile TiO(2)(110) surface leads to a very uniform, homogeneous molecular layer with a thickness of ∼0.45 nm, demonstrating formation of a self-terminating molecular monolayer. Thermal grafting of aryl iodides provides a facile route to link π-conjugated molecules to TiO(2) surfaces with the shortest possible linkage between the conjugated electron system and the TiO(2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call