Abstract

Recently, Raj et.al. have developed a very unique sintering technique, called flash-sintering [1]. According to their report, fully densified ZrO2-3mol%Y2O3 ceramic bulks were successfully obtained only at 800°C for 5sec. Considering the conventional sintering condition around 1500°C for a few hours necessary to obtain ZrO2-3mol%Y2O3 ceramic bulks, their sintering technique is very attracting from a viewpoint of sintering temperature, soaking time and further the physical phenomena. The flash-sintering is a technique that green compacts were heating under application of high electric field. When furnace temperature reaches at a critical temperature, the electric current abruptly increases and the compact sinters near full density with a very high shrinkage rate. So far, a few studies about flash-sintering were reported for Y2O3 [2], SrTiO3, MgO-Al2O3. To understand the detail mechanism of flash-sintering, more case studies must be necessary. In this study, we focused BaTiO3 widely used for electro-ceramics, which has not been investigated from a viewpoint of flash-sintering.Green compacts were prepared from BaTiO3 raw powders (0.1-m, 99.9%, SAKAI chemical industry Co. Ltd., Lot. No.1308607) after uniaxially pressed at 100MPa into a rectangular shape with 2x10x30mm(3). The green compacts were suspended into a box type furnace by Pt-wires with Pt-based paste. Then, the furnace temperature was raised at 300°C/h under application of electric field ranged from 25V/cm to 350V/cm with monitoring the specimen current. After sintering, the shrinkages, microstructure of the sintered compacts were investigated.Sintering rates at all electric fields were found to be accelerated by applying electric field in BaTiO3. The appearance of abrupt current increment was confirmed over the application of 75V/cm. For example, a density of green compact reached about 90% relative density of BaTiO3 only at 1020°C for 1min at 100V/cm. However, the final shrinkages were revealed to decrease with an increase in electric fields, which is very different from the case of ZrO2-3mol%Y2O3 and Y2O3 ceramics. This fact means that application of high electric fields does not effectively operate for enhancement of shrinkage rates in the case of BaTiO3. In contrast, only gradual current increment was observed at 25V/cm, which is categorized in field-assisted sintering (FAST) process. The density of the green compact at 25V/cm was more than 95%.To investigate the mechanism of the decrease in a total shrinkage with electric fields, the microstructure of flash-sintered compact was observed. As a result, it was found that discharge occurs during flash-sintering process, indicating that the input power due to high electric fields does not work effectively. A typical example of the microstructure near the discharge area is shown in Fig. 1. Fig. 1 is a TEM bright field image taken from BaTiO3 flash-sintered at 100V/cm. As seen in the image, the formation of a secondary phase along the grain boundary can be clearly seen. Diffractometric and EDS analysis have revealed that the secondary phase is BaTi4O9, one of compounds between BaO and TiO2 system. By discharging, grain boundaries partially melt and a part of Ba vaporizes to form BaTi4O9 with cooling. To investigate flash-sintering behaviors, it was concluded that FAST process play an important role to enhance the shrinklage rate in the case of BaTiO3.jmicro;63/suppl_1/i19/DFU048F1F1DFU048F1Fig. 1.TEM bright field image of a secondary phase and the electron diffraction pattern taken from the secondary phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.