Abstract

Phosphatidylcholines are significant components of pulmonary surfactant in the alveolar region of the lung, where they play a major role in lung function due to their surface tension reducing properties. However, separation and the direct identification of many of the primary products of reaction of phosphatidylcholines with inhaled pollutant gases has not been possible until recently due to the lack of suitable analytical techniques, so that compounds such as fatty acid methyl esters generally have been used as analogues for the phospholipids. We report here the first isolation and identification of the products of reaction of ozone with one of the unsaturated components of lung surfactant, beta-oleoyl-gamma-palmitoyl-L-alpha-phosphatidylcholine (OPPC), using a combination of high-performance liquid chromatography, fast atom bombardment mass spectrometry, and Fourier transform infrared, ultraviolet absorption, and nuclear magnetic resonance spectrometry as well as gas chromatography. The products are shown to be the cis and trans secondary ozonides of the parent phosphatidylcholine, analogous to those previously observed by other researchers in the reactions of the simple fatty acid methyl esters with ozone. This also appears to be the first report of fast atom bombardment mass spectra of these phospholipid secondary ozonides. The implications of this work for the inhalation of ozone, formed in photochemical smog, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call