Abstract

AbstractConversion of hydrotalcite (Ht) to saponite was observed by hydrothermal alkaline alteration of metal oxides. The conversion was through a pathway of hydration-dissolution-precipitation. It involved several critical steps, including the construction of Ht from metal oxides, dissolution of Al3+ from Ht, condensation of metasilicate anions with Ht, and finally crystallization of saponite. The condensation was favored by relatively low Mg/Al ratios of Ht, along with high concentrations of Al3+ and silicate oligomers in the environment, resulting in highly crystalline saponite. The latter conversion was greatly accelerated by the isomorphous substitution of Al3+ for Si4+ in silicate oligomers. The substitution generated the extra negative charge and led to the aforementioned condensation with Ht surface, thereby promoting the formation of saponite TOT layers. During the process, CO2 is an indispensable component. Initially intercalated as CO32− to form Ht, CO2 was subsequently eliminated from the solid phase, and saponite formed when the layer charge was reversed. Thus, this study presents a novel formation mechanism of saponite from metal oxides via hydrotalcite and contributes to a better understanding of the crystallization, chemical stability, and transformation of Ht to saponite. The results are also relevant to evaluating metal availability and carbon cycling on the surface of the Earth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.