Abstract

The Gibbs ensemble Monte Carlo method has been combined with the connectivity altering osmotic Gibbs ensemble to study water solubility and clustering in decane and polyethylene. We show that the presence of oppositely charged ion pairs that have fixed positions in the hydrocarbon matrices leads to an order of magnitude increase in the water solubility. This is important to a wide range of technical applications, since the uptake of the water leads to an increase in volume--or expansion--of the hydrocarbon phase which, in the case of polyethylene, may change the polymer properties and lead to water treeing. The increase in solubility is largest when the ions are sufficiently close so that rod-shaped clusters of water molecules form between the ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.