Abstract

ABSTRACT Protoplanetary discs are complex dynamical systems where several processes may lead to the formation of ring-like structures and planets. These discs are flared following a profile where the vertical scale height increases with radius. In this work, we investigate the role of this disc flaring geometry on the formation of rings and holes. We combine a flattening law change with X-ray and FUV photoevaporative winds. We have used a semi-analytical 1D viscous α approach, presenting the evolution of the disc mass and mass rate in a grid of representative systems. Our results show that changing the profile of the flared disc may favour the formation of ring-like features resembling those observed in real systems at the proper evolutionary times, with proper disc masses and accretion rate values. However, these features seem to be short-lived and further enhancements are still needed for better matching all the features seen in real systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call