Abstract

The results of experimental and theoretical investigations of relief formation on the surface of a steel target (grade St 3 steel, GOST (State Standard) 380) during treatment by compression-plasma flows are represented. The density of energy absorbed by the target varied in the range from 15 to 25 J/cm2, the pulse duration was 100 μs, and the pulse number was N = 1, 3, 5, 7. The experiment revealed the expansion of boundaries of the central area (the area on which the plasma flow is incident normally to the surface) with increasing pulse number. This is explained by the more uniform surface treatment at a greater pulse number. It is shown that to describe relief formation in the central area there is a need to take into account the pressure of the plasma flow on the target surface, apart from surface tension forces and energy dissipation due to viscosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call