Abstract

We discuss numerical results of relativistic magnetohydrodynamic (MHD) jet formation models. We first review some examples of stationary state solutions treating the collimation and acceleration process of relativistic MHD jets. We provide an a posteriori check for the MHD condition in highly magnetized flows, namely the comparison of particle density to Goldreich–Julian density. Using the jet dynamical parameters calculated from the MHD model, we show the rest-frame thermal X-ray spectra of the jet, from which we derive the overall spectrum taking into account a variation of Doppler boosting and Doppler shift of emission lines along the outflow. Finally, we present preliminary results of relativistic MHD simulations of jet formation demonstrating the acceleration of a low velocity (0.01 c) disk wind to a collimated high velocity (0.8 c).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.