Abstract
The effects of the electron mobilities and energy levels of different electron transport layer (ETL) materials on the performances were systemically investigated in blue phosphorescent organic light-emitting diodes. The spatial control of recombination zone (RZ) which was accompanied with triplet exciton quenching affected the balance between holes and electrons in the emission layer, resulting in the variations of the device performances. An optical micro-cavity effect in the electroluminescence (EL) spectrum around 500 nm was noticed by employing tris(8-hydroxyquinolinolato)aluminum (Alq3) ETL. This was attributed to the broadening of the emission zone through the emission layer over the ETL, exhibiting the greenish color coordinates. The current efficiency of the device with 3-phenyl-4(10-naphthyl)-5-phenyl-1,2,4-triazole (TAZ) ETL was much higher than that of the same structured device with any other ETL due to better charge balance as well as the suppression of triplet exciton quenching by the narrow RZ with low electron mobility and proper band alignment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.