Abstract
AbstractThe formation of a recirculating subsurface core in an internal solitary wave (ISW) of depression, shoaling over realistic bathymetry, is explored through fully nonlinear and nonhydrostatic two-dimensional simulations. The computational approach is based on a high-resolution/accuracy deformed spectral multidomain penalty-method flow solver, which employs the recorded bathymetry, background current, and stratification profile in the South China Sea. The flow solver is initialized using a solution of the fully nonlinear Dubreil–Jacotin–Long equation. During shoaling, convective breaking precedes core formation as the rear steepens and the trough decelerates, allowing heavier fluid to plunge forward, forming a trapped core. This core-formation mechanism is attributed to a stretching of a near-surface background vorticity layer. Since the sign of the vorticity is opposite to that generated by the propagating wave, only subsurface recirculating cores can form. The onset of convective breaking is visualized, and the sensitivity of the core properties to changes in the initial wave, near-surface background shear, and bottom slope is quantified. The magnitude of the near-surface vorticity determines the size of the convective-breaking region, and the rapid increase of local bathymetric slope accelerates core formation. If the amplitude of the initial wave is increased, the subsequent convective-breaking region increases in size. The simulations are guided by field data and capture the development of the recirculating subsurface core. The analyzed parameter space constitutes a baseline for future three-dimensional simulations focused on characterizing the turbulent flow engulfed within the convectively unstable ISW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.