Abstract

Amorphous Zr70Pd30 and Zr70Pd20Cu10 alloys were prepared by mechanical milling and melt spinnng to compare their devitrification behaviors. The devitrification of mechanically milled Zr70Pd30 and Zr70Pd20Cu10 powders occurs via a single-step, first-order transformation to a stable Zr2Pd tetragonal structure. This is in sharp contrast to the devitrification of the same amorphous alloys prepared by melt spinning, in which a primary meta-stable quasicrystalline phase forms. Since the mechanical milling process does not involve direct liquid phase formation of an amorphous structure, it is inferred that the short-range order in the solid state derived amorphous powder is different from that in the melt spun ribbon. During mechanical milling of an amorphous melt spun ribbon, crystallization of the quasicrystalline phase appears to precede disordering into an amorphous structure having an different short range order. Deformation of an amorphous melt spun ribbon by repetitive rolling at ambient temperature crystallizes the meta-stable quasicrystalline phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.