Abstract
A study was presented in this paper on porous structure with microsize holes significantly smaller than laser spot on the stainless steel 304 target surface induced by a picosecond Nd:van regenerative amplified laser, operating at 1064 nm. The target surface variations were studied in air ambience. The estimated surface damage threshold was 0.15 J/cm2. The target specific surface changes and phenomena observed supported a complementary study on the formation and growth of the subspot size pit holes on metal surface with dependence of laser pulse number of 50–1000 and fluences of 0.8 and 1.6 J/cm2. Two kinds of porous structures were presented: periodic holes are formed from Coulomb Explosion during locally spatial modulated ablation, and random holes are formed from the burst of bubbles in overheated liquid during phase explosion. It can be concluded that it is effective to fabricate a large metal surface area of porous structure by laser scanning regime. Generally, it is also difficult for ultrashort laser to fabricate the microporous structures compared with traditional methods. These porous structures potentially have a number of important applications in nanotechnology, industry, nuclear complex, and so forth.
Highlights
The application of lasers surface structure fabrication to different materials including metal is of great interest
Some pit holes with diameters significantly smaller than laser spot are often observed during laser-induced periodic surface structures (LIPSS) fabrication on material surface
A detailed study on the origin and development of these pit holes is rare, but some underlying physical effects have been preliminarily investigated by pump-probe microscopy on a Ta2O5/Pt layer system on glass substrate [12]
Summary
The application of lasers surface structure fabrication to different materials including metal is of great interest. Surface structure fabrications by ultrashort laser have been paid serious attention because it can manufacture structures with sub-spot size and can provide greater flexibility in fixing the position of ablated areas [2, 3]. They have widely potential applications in the fields of physics, chemistry, and materials, such as enhancing light absorption [4], improving catalytic action [5], and strengthening tribological and hydrophilic properties [6]. A comparison of these experimental results based on the currently accepted mechanism revealed the evolution of the holes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.