Abstract
The technique of the electrochemical and photoelectrochemical etching of single-crystal silicon wafers commonly used to fabricate macroporous silicon layers is inefficient and costly. An alternative method for forming bulk macroporous silicon is the high-temperature sintering of Si powder. The process of nanopowder sintering preliminarily subjected to dry cold compression (without binding additives) is investigated. The properties of the sintered material, including its microstructure, density, and electrical conductivity, are studied at different annealing temperature and time. Techniques for changing the porosity of the sintered samples and for determining of the interior surface area are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.