Abstract

Porous Si was formed on n-Si wafers, modified with fine Pt particles, by simply immersing the wafers in a HF solution without a bias or an oxidizing agent. The Pt particles were deposited onto n-Si wafers by electrodeposition or electroless displacement deposition. SEM images show that many pores, ranging between 0.1 and 0.8 μm in diameter and covered with a luminescent nanoporous layer, were formed only on the Pt-modified area of the n-Si surface by immersion in 7.3 M HF solution for 24 h. The weight loss of Pt-electrodeposited n-Si wafer was 0.46 mg cm −2, corresponding to ca. 2 μm in thickness. The weight loss and the structure of porous Si changed with the etching conditions, such as concentration of dissolved oxygen in the HF solution, distribution density of metal particles, and different kinds of metal particles. A photoelectrochemical solar cell equipped with a Pt-particle-modified porous n-Si electrode gave 13.3 mW cm −2 of maximum output power, which corresponds to a 13% conversion efficiency and is higher than that for the Pt-particle-modified flat n-Si electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.