Abstract
Porous natural-synthetic polymer composites were prepared using an alginate emulsion templating step followed by supercritical carbon dioxide (sc-CO2) assisted impregnation (and subsequent polymerisation) of synthetic monomer mixtures. In the impregnation step, an initiator and either 2-hydroxyethylmethacrylate (HEMA), butylmethacrylate (BMA), ethyleneglycoldimethacrylate (EGDMA) or trimethylolpropanetrimethacrylate (TRIM) monomers, respectively, were used. After impregnation into the porous alginate foam, the synthetic monomer(s) were polymerised in situ, forming porous composites with increased stiffness. A number of methods were used to assess the effects of the impregnation/polymerisation process including uniaxial compression testing, scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), helium pycnometry and Fourier transform infra-red (FTIR) spectroscopy. Our results suggest that alginate foams impregnated with HEMA show higher weight gains and are stiffer than those impregnated with BMA. Such stiffer porous composites are potentially better suited than the unmodified materials in applications such as tissue engineering (cell-seeded) scaffolds, where mechanical conditioning is desired to stimulate cells for development of neo tissue growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.