Abstract

The morphology of porous anodic alumina (PAA) formed by anodizing in inorganic electrolytes is reported. An impure aluminum was anodized in sulfuric acid, phosphoric acid and chromic acidat room temperature with a constant applied potential 2 – 30 V. The formation of porous anodic alumina was carried out by one and two steps anodization. It is clearly noted that anodizing impure aluminum at room temperature provide higher kinetic of oxide dissolution compared to oxide growth. Two steps anodizing aluminum in sulfate electrolyte always resulted in random porous alumina, while phosphate electrolyte provided strong anodization producing irregular porous alumina with average diameter of 61.6 nm. Two steps anodizing aluminum in chromate electrolyte produce better pore ordering with relatively large size pore distributions. The average pore diameter of alumina increases linearly with applied voltage, with proportionality factor lp 0.83 nmV-1. Annealing the sample increased the interpore distance, removed stresses providing lower activation energy for pore formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call