Abstract

Polydopamine (PDA) generated by the oxidative self-polymerization of dopamine shows great potential for surface modification. Observed PDA nanostructures are nanoparticles and thin films. The formation mechanism of PDA is still unclear; thus, the manipulation of PDA nanostructures is a big challenge. In this study, we first demonstrated that folic acid shows a dramatic effect on the PDA nanostructure: New aggregated nanostructures of PDA, nanobelts and nanofibers, were generated in a dopamine/folic acid system. We hypothesized that folic acid may be involved in the stacking of protomolecules of PDA by π-π interactions and hydrogen bonding. Herein we describe the first experimental strategy to manipulate the aggregation of PDA by using small molecules. This study not only provides a new method for generating PDA nanofibers, which are proposed bioorganic electronic materials, but also a possible way to understand the formation mechanism of PDA and its analogues in nature, melanins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.