Abstract

Chromophoric dissolved organic matter (CDOM) is an important fraction of the marine carbon cycle that controls most light absorption and many photochemical and biological processes in the ocean. Despite its importance, the chemical basis for the formation of oceanic CDOM remains unclear. Currently, CDOM's optical properties are best-described by an electronic interaction (EI) model of charge transfer (CT) complexes which form between electron-rich donors and electron-poor acceptors. While terrigenous compounds such as lignin best fit this model, planktonic sources of CDOM have not yet been tested. Here, we have tested CDOM formed during an incubation experiment using a natural phytoplankton assemblage and throughout active growth, stationary phase and algal biomass decomposition. Absorbance of the derived planktonic CDOM generally decreased with increasing wavelength, similar to the reference Pony Lake (PLFA) and Suwanee River (SRFA) fulvic acid solutions used as models of terrigenous CDOM. Further, after 60 d of microbial degradation in the dark, CDOM exhibited fluorescence emission maxima continuously red-shifted into the visible band, consistent with PLFA and SRFA. Reduction of carbonyl-containing groups, key to CT complex formation, with sodium borohydride (NaBH4) produced coherent results in planktonic CDOM and reference FAs. Absorption at 350 nm decreased by 50% for planktonic CDOM and by 30% for PLFA and SRFA, with corresponding increases in spectral slope (S) values, indicating preferential loss of absorption well into the visible. Fluorescence likewise responded with enhanced emission at shorter wavelengths. Apparent quantum yields (Φ) were similarly affected. Results from our work support prior observations that phytoplankton and bacteria are important sources of CDOM that color the ocean's “twilight zone”. We hypothesize that microbial processing of a variety of source substrates into more complex compounds represented as planktonic CDOM likely represents a semi-refractory pool of DOM in the ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call