Abstract

It has been shown that mixtures of monoalkylated amphiphiles and sterols can form liquid-ordered (lo) lamellar phases. These bilayers can be extruded using conventional methods to obtain large unilamellar vesicles (LUVs) that have very low permeability and a specific response to a given stimulus. For example, pH variations can trigger the release from LUVs formed with palmitic acid and sterols. In the present work, the possibility to form non phospholipid liposomes with mixtures of stearylamine (SA) and cholesterol (Chol) was investigated. The phase behavior of these mixtures was characterized by differential scanning calorimetry, infrared, and (2)H NMR spectroscopy. It is found that this particular mixture can form a lo lamellar phase that is pH-sensitive as the system undergoes a transition from a lo phase to a solid state when pH is increased from 5.5 to 12. LUVs have been successfully extruded from equimolar SA/Chol mixtures. Release experiments as a function of time revealed the relatively low permeability of these systems. The fact that the stability of these liposomes is pH dependent implies that these LUVs display an interesting potential as new cationic carriers for pH-triggered release. This is the first report of non phospholipid liposomes with high sterol content combining an overall positive charge and pH-sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.