Abstract

Sm2+-doped Al2O3–SiO2 glasses with three-dimensionally interconnected macroporous morphology have been prepared via the alkoxide-derived sol–gel process containing poly(ethylene oxide) and SmCl3·6H2O. The macroporous morphology is obtained by concurrently inducing the phase separation and sol–gel transition. When the macroporous aluminosilicate glasses doped with Sm2+ are irradiated with a visible light laser at the wavelength of 488nm, a hole or a dip appears in the plot of fluorescence intensity versus the incident angle of laser beam, indicating that the valence state of Sm2+ is spatially modulated through the interference of multiply scattered light. The hole profile can be controlled by adjusting the macroporous morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call