Abstract
Mitochondria are an important intracellular source of ROS as well as a sensitive target for oxidative damage under certain pathological conditions such as iron or copper overload. Mitochondrial membranes are rich in the tetraacyl phospholipid cardiolipin. Its integrity is important for efficient oxidative phosphorylation. Mouse liver mitochondria were subjected to oxidative stress by the Cu 2+(Fe 2+)/H 2O 2/ascorbate system. Phosphatidic acid was detected in oxidized mitochondria, but not in unperturbed mitochondria. The Cu 2+/H 2O 2/and (or not) ascorbate system caused the formation of phosphatidic acid and phosphatidylhydroxyacetone in cardiolipin liposomes. These products proceed via an HO -radical induced fragmentation taking place in the polar moiety of cardiolipin. Mass spectrometry analysis of phosphatidic acid newly formed in mitochondria revealed that it has been derived from fragmentation of cardiolipin. Thus, free-radical fragmentation of cardiolipin in its polar part with the formation of phosphatidic acid is a likely mechanism that damages mitochondria under conditions of oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.