Abstract
We have studied the formation of Pd-nanodots on SiO2 from ultrathin Pd films being exposed to remote hydrogen plasma at room temperature, in which parameters such as the gas pressure and input power to generate H2 plasma and the Pd film thickness were selected to get some insights into surface migration of Pd atoms induced with atomic hydrogen irradiation and resultant agglomeration with cohesive action. The areal dot density was controlled in the range from ∼3.4 to ∼ 6.5×1011 cm-2 while the dot size distribution was changed from ∼7 to ∼1.5 in average dot height with ∼40% variation in full-width at half maximum. We also fabricated MOS capacitors with a Pd-nanodots floating gate and confirmed the flat-band voltage shift in capacitance-voltage characteristic due to electron injection to and emission from the dots floating gate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.