Abstract

An understanding of the conversion process from slurry to particle layer on a substrate is required for the precise control of the particle alignment and the material distribution in the coated slurry. In this work, variation of coated slurry thickness during drying was applied to evaluate drying and particle layer formation simultaneously. The slurry used consisted of micron-sized silica or poly (methyl methacrylate) particles and an aqueous solution of poly-vinyl alcohol (PVA) possessing differing degrees of hydrolysis. During the drying process, initially the thickness of the coated slurry was observed to decrease at a constant rate in the concentration stage, and subsequently it began to show large fluctuations due to the emergence of particles on the drying surface in the packing stage. In the final fixing stage, the fluctuation of film thickness was restricted because particles were immobilized by highly viscous concentrated PVA or by PVA molecule bridging. Based on the variation and fluctuation of film thickness, we introduced two characteristic dimensionless time ratios: (a) void fraction in a packed particle layer at the end of concentration stage; and (b) the time required to fix particle position after the end of the packing stage. We concluded that the dispersed state and settling velocity of the particle determines the space between particles in a loose packing layer, and we found that the distribution of polymers in a particle layer has a strong influence on the mobility of particles in a tightly packed layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call