Abstract

There is a significant potential to increase the sustainability of the fishing and aquaculture industries through the maximization of the processing of byproducts. Enzymatic hydrolysis provides an opportunity to valorize downstream fish industry byproducts for the production of protein hydrolysates (FPH) as a source of bioactive peptides (BAP) with health benefits. Deteriorative oxidative reactions may occur during the enzymatic hydrolysis of byproducts, influencing the safety or bioactivities of the end product. Lipid oxidation, autolysis mediated by endogenous enzymes in viscera, protein degradation, and formation of low-molecular-weight metabolites are the main reactions that are expected to occur during hydrolysis and need to be controlled. These depend on the freshness, proper handling, and the type of byproducts used. Viscera, frames, trimmings, and heads are the byproducts most available for enzymatic hydrolysis. They differ in their composition, and, thus, require standardization of both the hydrolysis procedures and the testing methods for each source. Hydrolysis conditions (e.g., enzyme type and concentration, temperature, and time) also have a significant role in producing FPH with specific structures, stability, and bioactivity. Protein hydrolysates with good safety and quality should have many applications in foods, nutraceuticals, and pharmaceuticals. This review discusses the oxidative reactions during the enzymatic hydrolysis of byproducts from different fish industry sectors and possible ways to reduce oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call