Abstract

Quatsomes are a class of nonphospholipid vesicles in which bilayers are formed from mixtures of quaternary ammonium (QA) amphiphiles and sterols. We describe the formation of oxidation and acid-sensitive quatsome-like vesicles and other bilayer assemblies from mixtures of a ferrocenylated QA amphiphile (FTDMA) and several cholesterol derivatives. The influence of the sterol and the preparation method (extrusion or probe sonication) on the stability and morphology of the resulting vesicles is explored; a variety of structures can be obtained from small (ca. 30 nm) spherical unilamellar and oligolamellar quatsome-like vesicles to large (ca. 200 nm) multilamellar onion-like vesicles to extended nanoribbons many micrometers long. FTDMA-sterol vesicles undergo drastic shifts in vesicle and membrane structure when treated with a chemical oxidant (Frémy's salt), a feature previously observed in liposomes containing FTDMA and now confirmed in nonphospholipid vesicles. Size distributions of spherical quatsome-like vesicles obtained from cryo-TEM are examined to estimate the membrane bending rigidity, and a hypothesis is presented to explain the underlying mechanism of the profound membrane alterations observed as a consequence of ferrocene oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.