Abstract

The bimolecular reactivity of xenon with C(7)H(n)(2+) dications (n=6-8), generated by double ionization of toluene using both electrons and synchrotron radiation, is studied by means of a triple-quadrupole mass spectrometer. Under these experimental conditions, the formation of the organoxenon dications C(7)H(6)Xe(2+) and C(7)H(7)Xe(2+) is observed to occur by termolecular collisional stabilization. Detailed experimental and theoretical studies show that the formation of C(7)H(6)Xe(2+)+H(2) from doubly ionized toluene (C(7)H(8)(2+)) and xenon occurs as a slightly endothermic, direct substitution of dihydrogen by the rare gas with an expansion to a seven-membered ring structure as the crucial step. For the most stable isomer of C(7)H(6)Xe(2+), an adduct between the cycloheptatrienyldiene dication and xenon, the computed binding energy of 1.36 eV reaches the strength of (weak) covalent bonds. Accordingly, electrophiles derived from carbenes might be particularly promising candidates in the search for new rare-gas compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.