Abstract

We consider the conversion of monochromatic radiation in the case of resonant interaction with a quantum system under the condition of harmonic modulation of the quantum transition frequency by the action of additional nonresonant radiation due to the Stark or Zeeman effect, taking into account the inhomogeneous broadening of the quantum transition line. It is shown analytically and numerically that resonant radiation can be converted in a train of ultrashort pulses with a peak intensity exceeding manifold the incident wave intensity. The possibility of the additional compression of the produced pulses is studied by compensating the inherent frequency modulation in a medium with a quadratic or programmable dispersion. The optimal values of the radiation — matter interaction parameters are found numerically. It is shown that generation of femtosecond optical pulses of radiation quasi-resonant to the δ transition of the atomic hydrogen Balmer series is possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call