Abstract

In this study, we investigated the effects of H2O2 addition on OH radical formation on the surfaces of visible-light-irradiated BiVO4–TiO2 nanocomposite photocatalysts. Additionally, we examined the possible roles of OH radicals formed by the reduction reaction of H2O2 on the visible-light-irradiated surfaces of photocatalytic BiVO4–TiO2 nanocomposites. The BiVO4–TiO2 nanocomposite photocatalysts were prepared by mixing a BiVO4 photocatalytic film with commercially available semiconductor particulate TiO2 photocatalysts. By removing oxygen gas from the photocatalytic reactor, the effects of oxygen molecules on OH radical formation during the visible-light irradiation of BiVO4–TiO2 nanocomposite photocatalysts were examined. During visible-light irradiation, BiVO4 and BiVO4–TiO2 photocatalysts play different roles in OH radical formation because of two characteristic reduction reaction channels: (a) the direct reduction of H2O2 on photocatalytic surfaces and (b) the indirect reduction reaction of H2O2 by superoxide radical anions (O2−).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call