Abstract

This study focuses on a novel technique to produce thermoplastic composites directly from bicomponent nonwovens without using any resins or binders. Conceptually, the structure of the bicomponent fibers making up these nonwovens already mimics the fiber–matrix structure of fiber reinforced composites. Using this approach, we successfully produced isotropic thermoplastic composites with polymer combinations of polyethylene terephthalate/polyethylene (PET/PE), polyamide-6/polyethylene (PA6/PE), polyamide-6/polypropylene (PA6/PP), and PP/PE. The effects of processing temperature, fiber volume fraction, and thickness of the preform on the formation and structure of the nonwoven composites were discussed. Processing temperatures of 130 and 165 °C for PE and PP matrices, respectively, resulted in intact composite structures with fewer defects, for fiber volume fraction values of up to 51%. Moreover, an insight into the changes on the fine structure of the bicomponent fibers after processing was provided to better explain the mechanics behind the process. It is hypothesized that the composite fabrication process can result in annealing and increases the degree of crystallinity and melting temperature of polymers by thickening lamellae and/or removing imperfections. One of the other outcomes of this study is to establish what combination of mechanical properties (tensile and impact) nonwoven composites can offer. Our results showed that compared to glass mat reinforced thermoplastic composites, these novel isotropic nonwoven composites offer high specific strength (97 MPa/g cm−3 for PA6/PE), very high strain to failure (152% for PP/PE), and superior impact strength (147 kJ/m2 for PA6/PP) which can be desirable in many critical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call